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ADAPTIVE MEASUREMENT CONTROL FOR CALORIMETRIC ASSAY

Jeffrey G. Glosup, Lawrence Livermore National Laboratory, P. O. Box 808,
Mail Stop L-195, Livermore, CA 94551, USA, 510/423-0657 and

Michael C. Axelrod,  Lawrence Livermore National Laboratory, P. O. Box 808, Mail Stop
L-200, Livermore, CA 94551, USA, 510/422-0929

Abstract: The performance of a calorimeter is usually evaluated by constructing a

Shewhart control chart of its measurement errors for a collection of reference standards.

However, Shewhart control charts were developed in a manufacturing setting where a

observations occur in batches. Additionally, the Shewhart control chart expects the variance

of the charted variable to be known or at least well estimated from previous

experimentation. For calorimetric assay, observations are collected singly in a time

sequence with a (possibly) changing mean, and extensive experimentation to calculate the

variance of the measurement errors is seldom feasible. These facts pose problems in

constructing a control chart.  In this paper, we propose using the mean squared successive

difference to estimate the variance of measurement errors based solely on prior

observations. This procedure reduces or eliminates estimation bias due to a changing mean.

However, the use of this estimator requires an adjustment to the definition of the alarm and

warning limits for the Shewhart control chart. We propose adjusted limits based on an

approximate Student’s t-distribution for the measurement errors and discuss the limitations

of this approximation. Suggestions for the practical implementation of this method are

provided also.

1. Introduction

The operational procedure for a calorimeter should contain some procedures to ensure

that the measurement process remains in statistical control. Within the U.S. Department of

Energy (DOE) complex, it is required that at least every fifth calorimetric measurement be

made on an approved standard and the measurement errors of these standards are used to

verify that the instrument is in statistical control. The accepted methodology for

demonstrating statistical control is the classic Shewhart control chart, which is also referred

to in the statistical literature as the Xbar chart.

A brief description and history of the development of the Shewhart chart is provided in

Section 2 below. This description stresses the importance of grouped data in the
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development of the Shewhart chart. This section also reviews and critiques existing

recommended methods for creating Shewhart charts from observations that occur singly.

Section 3 proposes an improved method for estimating the variability of observations that

occur singly. Section 4 describes the procedures for constructing a modified control chart

using this new estimator and offers some suggestions on its uses and limitations. Section 5

demonstrates the use of the modified control charting procedure with an example.

2. A Review of the Development and Use of Shewhart Control Charts

The idea of using “control charts” to monitor the precision and accuracy of

manufacturing processes was introduced by Walter A. Shewhart, a researcher at Bell

Telephone Laboratories, in the early 1930’s. Much of the motivation and theory behind the

production of control charts were set out in two books by Shewhart [Shewhart (1931) and

Shewhart (1986),which is a reprint of a set of notes from lectures delivered to the Graduate

School of the U. S. Department of Agriculture in 1939]. More modern accounts of the

methods of statistical process control, especially the production of Shewhart charts, are

discussed by John (1990), Wetherill (1991), and Bissell (1994).

In general, the methods developed by Shewhart in the 1930’s, assume that the process

to be monitored is a manufacturing process and that this process produces lots or batches

of the product (e.g. widgets). The quality of a batch of widgets is measured by some

attribute denoted by x. The quality of the batches, as measured by x, is said to be in

statistical control if the mean and variance of x are constant. However, the object we refer to

as the Shewhart chart is designed only to detect changes in the mean of x. Throughout the

remainder of this paper, we assume that statistical control only refers to a constant mean;

details of procedures for detecting nonconstant variance are available in Wetherill (1991)

and Bissell (1994).

 The quality of the batches over time is monitored by taking a sample of size k from

each of n lots produced over the time interval of interest and calculating the sample mean

xi  and sample variance si
2  for lots   i n= 1, ,K . Then the sample means xi  are plotted

against lot number i for   i n= 1, ,K  with the sample mean as the ordinate and the lot number

as the abscissa. This plot, which is referred to as the Shewhart chart, is used to make

statistical inferences about the control of the quality attribute x. In order to simplify the

statistical inference procedures, two assumptions about the sample means xi  are made: the
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sample means are normally distributed, and they are statistically independent (i.e. the lots

are independent). Additionally it is assumed that the quality attribute x has constant mean

value µ and constant variance σ2. Often µ is referred to as the target value of the process.

The statistical control of the process is monitored by adding three horizontal lines to

the Shewhart chart plot. The first line added is a centerline which is located at the target

value µ if it is known or at the grand mean

 x
n

xi
i

n

=
=
∑1

1

 (1)

of the sample means if µ is not known. The other two lines are the control or alarm limits.

If the variance σ2 of the quality attribute x is known,  these are located at the centerline ±
3.09σ k . If the variance σ2 is not known, the alarm limits are located at the centerline ±
3.09 s kTOT where sTOT

2  is the total estimated variance of the process. In both cases, the

constant 3.09 is the 99.9th percentile of a standard normal distribution although its value is

often truncated to  3.00. The process is said to be in statistical control (i.e. it has a constant

mean for the quality attribute x) if all of the plotted values of xi  fall between the upper and

lower alarm limits. If any one of the xi  falls outside the alarm limits, the process is said to

be out of control, and the cause of the out of control signal needs to be identified and

corrected. More recent control charting theory adds warning lines to the Shewhart chart as

well. The warning lines are located at the centerline ± 1.96σ k  (centerline ±
1.96 s kTOT  if σ2 is not known). The constant 1.96 is the 97.5th percentile of the normal

distribution, and it is frequently rounded to 2.00. If any two consecutive sample means fall

outside the warning limits but not outside the alarm limits, the process is also said to be out

of control, see John (1990) or Bissell (1994).

In the (usual) case where the variance σ2 is not known, the total estimated variance

sTOT
2

   can be calculated from the sample means xi  and sample variances si
2  for   i n= 1, ,K .

If the variation of the quality attribute x of the widgets is assumed to occur completely

within the lots, with negligible variation in mean between the lots, and if the sample size k

is constant for all lots, the total estimated variance is

s
s

nTOT

i
i

n

2

2

1= =
∑

. (2)
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If some variation in mean value between lots is expected, a more complicated formula for

the total estimated variance can be used; see Chapter 3 of Wetherill (1991). However, in all

cases, the grouping of the individual measurements x into batches is an essential ingredient

allowing calculation of the total estimated variance and the production of the control chart.

If the quality attribute data x does not naturally occur in batches, the preferred method

of charting the data is to create artificial batches, which are referred to as rational

subgroups. A rational subgroup is a collection of observations apparently having the same

mean value although the mean value may vary between subgroups. If such a grouping is

feasible, the rational subgroups can be treated as batches and the methods discussed above

are directly applicable. However, there are situations where reasonable rational subgroups

cannot be formed. The control charting of measurement errors in calorimetric assay is one

of those situations since each measurement takes a significant fraction of a day to complete,

and the environmental factors which may affect the measurement process change on

roughly the same time scale.

 Some procedures have been developed for producing Shewhart control charts for

observations that occur singly over time and cannot be formed into rational subgroups

(these are referred to as one-at-a-time data). Clearly, the one-at-a-time data can be plotted

against observation number (or time of observation if desired) and a grand mean x( ) can

be used to estimate the centerline for the control chart if the target value µ is unknown.

However, in order to obtain control limits, the variability of the process will have to be

estimated (assuming σ2 is not known), and two assumptions will have to be made: the

quality attribute x is normally distributed and the any two observations of x are statistically

independent. Experience indicates that for calorimetric data, these last two assumptions are

often reasonable, but need to be verified on a case by case basis.

The main problem that arises in producing the control chart is that estimating the

variability of the process is now more difficult. The naive procedure would be to use the

standard estimator of the variance

s
x x

n

i
i

n

2

2

1

1
=

−

−
=
∑( )

(3)
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where n is the number of observations available. However, this estimator is biased if the

observations x are serially correlated or if the true mean of the variable x is not a constant.

Thus in situations where the mean of the quality attribute varies over time; e.g. as a

systematic function or random walk, this estimator will produce an estimated variance that

is biased (usually too large) and this will lead to false out of control signals occurring with

much different probability than expected .

As an alternative to the usual variance estimate, modern work on control charts

suggests using an ad-hoc method for estimating the process variation. One method

suggested by Wetherill (1991)  is the method of moving ranges. This method calculates the

ranges of groups of observations of size k for k = 2, 3,… and estimates the variance as a

scale constant times the mean of the ranges for a particular value of k (where the mean is

taken relative to the number of ranges, not the number of observations). The appropriate

scale factors are provided in Chapter 6 of Wetherill (1991). The best k for defining the

estimator is chosen subjectively by plotting the variance estimates as a function of k. It is

unclear what the bias and variance of this estimator are because of its subjective nature.

Wetherill (1991) also indicates it is not an appropriate estimator if the mean of the process

contains a linear trend. Thus it is obvious that a new, more robust method for calculating

the variation of the process is needed for one-at-a-time data.

3. An Improved Method for Estimating the Variability of a Process

As seen in the previous section, little work has been done within the field of control

charting towards fully adapting the methodology to one-at-a-time data. The main problem

involves estimating the variance of the quality attribute x which is to be plotted in the

control chart. The usual estimator of standard deviation is very sensitive to a randomly or

systematically drifting mean and so leads to an estimate that is biased. The ad-hoc method

for estimating the process variance mentioned above is very subjective and it is unclear

how it reacts to violations in the assumptions of constant mean of the process. However, a

method for objectively estimating the variance of the quality attribute x using the mean

squared successive differences (MSSD) of the observations has been proposed by several

people [Scholz (1994) and  Marquardt (1993)] although these proposals have not yet

entered the mainstream of statistical literature. The goal of this section is to describe the
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properties of the MSSD as an estimator of the process variance and describe how the

Shewhart control charting procedure can be modified to use this new estimator.

The MSSD was first suggested as a variance estimator by researchers studying

artillery ballistics, see von Neumann (1941). It was developed to reduce the bias of the

variance estimate caused by a nonconstant mean value of the variable x. The MSSD

estimator of the variance is defined as

s
x x

nMSSD

i i
i

n

2
1

2

1

1

2 1
=

−( )
−

+
=

−

∑
( )

. (4)

As can be seen from the definition, this estimator does not measure the distance of each

point from the sample mean but only the distance between consecutive points. This allows

the MSSD to estimate the variance of the process with less bias than the standard estimator

in cases where the mean is randomly or systematically (not necessarily linearly) varying. In

fact, this estimator forms a key piece of the von Neumann ratio test for independence

(versus an alternative of serial correlation) of normally distributed observations, see

Chapter 6 of Brownlee (1965) , Chapter 11 of Lindgren (1976), or Chapter 3 of Madansky

(1988).

Assuming that consecutive values of the variable x are independent, the MSSD

estimator of the variance is

E sMSSD
2 2[ ] = σ (5)

which means it is an unbiased estimator of the variance; see Brownlee (1965) or von

Neumann (1941). The variance of the MSSD estimator of the variance is

Var s
n

nMSSD
2

2
43 4

1
[ ] = −

−( )
σ , (6)

see von Neumann (1941). For the case where the observations x are independent with

constant mean and variance, the usual estimator of the variance is also unbiased, i.e.

E s2 2[ ] = σ , and its variance is
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Var s
n

2 42
1

[ ] =
−( )

σ . (7)

Thus the efficiency1 of sMSSD
2  relative to s2  is

2 1
3 4

2
3

1
1

3 4
( )n

n n

−
−

= +
−





 (8)

indicating that as n gets very large, the variance of the usual estimator s2  is 2/3 as large as

the variance of the MSSD estimator; see von Neumann (1941). However, the efficiency in

equation (8) is based on the assumptions that the observations are independent with

constant mean and variance. In cases where the mean is not a constant, the bias of the usual

estimator is larger than the bias of the MSSD estimator of variance. and the relative

efficiency will be larger than 2/3 and can even become larger than 1, indicating that the

MSSD estimator is a better estimator than the usual variance estimator s2 .

For the case where the observations x are normally distributed with constant mean

value µ and constant variance σ2,the probability distribution of the variance estimator
s2 from equation (3) is well known to be proportional to the χn−1

2  distribution (where the

subscript n-1 is the degrees of freedom of the distribution); see for example Chapter 8 of

Brownlee (1965). However, the probability distribution of the of the MSSD estimator
sMSSD

2  is not a simple distribution. The distribution function for the case where the

observations x are normally distributed with constant mean value µ and constant variance

σ2 is shown by  von Neumann (1941)  to be proportional to a Bessel function of order

zero. However, since the estimator can be expressed as a quadratic form [see von

Neumann (1941)], it was suggested by Scholz (1994) that an approximation due to
Satterthwaite (1946) could be used for the sampling distribution of  sMSSD

2 . This

approximation assumes that the distribution of the estimator is proportional to a χd
2

distribution where the degrees of freedom d are chosen to make this approximate
distribution as similar as possible to the true unknown distribution. For the χd

2  distribution

this consists of choosing d so that the variance of the χd
2  distribution, which is 2d, is equal

to the variance of the ratio dsMSSD
2 2σ , which can be calculated using equation (6) above.

1Efficiency and relative efficiency are concepts that were introduced by R. A. Fisher in the 1920’s;
see Fisher (1921) for the original work or Kendall (1979) for a clear definition and discussion of the
concepts.
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Solving this equation, the appropriate degrees of freedom for the approximate distribution

is

d
n

n
= −( )

−
2 1
3 4

2

. (9)

Clearly, the degrees of freedom  are less than n-1, the degrees of freedom of the usual

variance estimator for n observations. Figure 1 shows a plot of the value of d as a function

of n. Note that the relationship is nearly linear and can be accurately approximated by

d n= −2 1 3( ) .

Figure 1
Degrees of Freedom as a Function of Sample Size

4. Constructing the Modified Control Chart

In order to construct the classical Shewhart control chart described in Section 2 for the

case where the variance σ2 is known, the alarm/warning limits were calculated using the

pivotal quantity2

2For a definition of the pivotal quantity and a discussion of its use in forming confidence intervals and
constructing hypothesis tests, see Lindgren (1976). For the connection between control charts,
confidence intervals and hypothesis tests, see John (1990).



page 9

Z
x

k
i= − centerline

σ 2
. (10)

This pivotal quantity is normally distributed since the Central Limit Theorem provides that

xi  will tend to be normally distributed and the denominator and the centerline are constants.

In the case where the variance σ2 is not known, it is replaced by its estimate sTOT
2  . To be

exact, the pivotal with the true variance replaced by its estimate should have Student’s t-

distribution with n(k-1) degrees of freedom; see, for example, Chapter 9 of Brownlee

(1965). However, in most cases of classically constructed Shewhart control charts, the

product n(k-1)is so large that the t-distribution is essentially equivalent to the normal

distribution and there is little error in assuming the pivotal quantity is again normally

distributed.

The control chart to be produced with the MSSD estimate of the process variance

should have alarm/warning limits based on pivotal quantity

t
x

sMSSD

= − centerline
2

. (11)

 If x is normally distributed with mean = centerline, and the numerator and denominator of

equation (11) are independent, this pivotal quantity will approximately have Student’s t-

distribution since we know the term sMSSD
2  approximately proportional to a χd

2  distribution.

As mentioned previously, the quality attribute x for a calorimetric measurement process,

which is the measurement error, is frequently normally distributed, and because an

individual observations x forms only a small part of the denominator term, an assumption

of independence is likely to be approximately correct. Some simulation experiments on the

correctness of the t-distribution for the pivotal quantity in equation (11) as a function of n

are discussed further below in this section.

The alarm/warning limits for the modified chart are produced by specifying a desired

false detection rate for the alarm/warning limit; let α denote the desired probability of a

false detection of alarm/warning. This specification is used together with the appropriate t-

distribution to find a critical-value td ( )α  for the alarm/warning limit so that

Pr[ ( )]t td> =α α
2

. (12)
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For the alarm limit, the usual value of α  is 0.002 and for the warning limit, the usual value

of α  is 0.05. Inverting the pivotal quantity in equation (11) and using the symmetry of the

t-distribution, the alarm/warning limit is placed at x = centerline ± td ( )α sMSSD .

To actually construct the modified control chart, a collection of approximately 10

observations needs to be obtained in order to start the variance estimator. Then as each

additional observation is obtained, it should be charted against its observation number (or

the time of observation). The centerline is added at the known (or estimated) target value

and the appropriate alarm/warning limits for each observation are added at the centerline ±
td ( )α sMSSD  where sMSSD  is calculated from all observations up to and including the plotted

point. As each new observation is added, the total number of observations available

increases by one and so the degrees of freedom d increase by approximately 2/3. Thus, this

control chart is adaptive in two senses: it adjusts the control limits to be tighter as more

information is added to the calculation of the variation of the process, and since the variance

of the process is updated with each added observation, it fluctuates, either up or down, with

the natural process variation. That is, if the process variation naturally settles down over

time, the estimated process variation will decrease and the alarm/warning limits will slowly

shrink towards the centerline over time.

A simulation study was performed to arrive at the approximate number of

observations needed to start the process variance estimator. The simulation produced 1000

sets of n observations from a normal random variable generator with mean = 0 and

variance = 25. For each of these 1000 data sets, the pivotal quantity in equation (11) was

calculated using the last observation in the data set in the numerator and the MSSD

variance estimate in the denominator. Then the assumption that these pivotal quantities

were t-distributed with d degrees of freedom was checked using a quantile-quantile plot,

see Chambers (1983) for details. This simulation study was repeated for 3 values of n; n =

7, 11, and 21. The resulting quantile-quantile plots are shown in Figures 2,3, and 4

respectively. The 1000 points plotted in each graph should follow a straight line if the

assumed t-distribution is correct. Curvature away from a theoretical straight line indicates a

departure from the assumed t-distribution. Clearly Figure 2 indicates that the assumed t-

distribution is not correct for n = 7. However, for n = 11 and 21 the assumed t-distribution

seems adequate. Thus the alarm/warning limits produced with 10 preliminary
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observations, plus one additional observation, will be accurate. However, it would not be

prudent to use fewer than 10 preliminary observations to start the control chart.

5. A Demonstration of the Modified Control Chart

The modified control charting procedure presented in the last section is demonstrated

here by an example. The data used are the measurement errors from a heat-flow type

calorimeter operated by Lawrence Livermore National Laboratory. The quality attribute

being monitored is the relative measurement error

x
meas std

std
= −

(13)

where meas is the measured power of a standard in Watts and std is the calculated decayed

power of the standard in Watts. The data used to produce the control chart, including the 10

preliminary points, are contained below in Table 1. Table 2 shows how the improved

variance estimator is calculated. Column 2 of Table 2 contains the measurement errors

from Table 1. Column 3 contains the successive differences of the measurement errors,

and column 4 contains the square root of the MSSD estimator of the variance. Note that the

MSSD estimate is not shown for the first 10 points since its distribution cannot be

approximated in these cases.

Figure 5 shows the modified Shewhart control chart for the relative measurement

errors over the period from July 19 through October 17 of 1994. Note that the centerline of

the chart is set at -0.0025, a target value determined by previous experimentation. Figure 5

clearly shows how the alarm/warning limits tend to shrink as more information becomes

available. However, it also demonstrates how the variance estimator, and hence the

alarm/warning limits, respond to a large observation by increasing the distance from the

center line to the alarm/warning limits.
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Table 1

Heat Flow Calorimeter Data Example

Date Nominal
Power
(Watts)

Measured
Power
(Watts)

Mound
Standard

Power
(Watts)

Relative
Error

6/9/94 1.00 0.999118 0.997949 0.001171
6/14/94 2.00 1.742863 1.741307 0.000894
6/21/94 0.10 0.095427 0.094642 0.008294
6/23/94 0.25 0.214220 0.214459 -0.001115
6/24/94 0.10 0.093889 0.094636 -0.007892
7/2/94 1.00 1.001856 0.998169 0.003694
7/6/94 0.100 0.093890 0.094611 -0.007631
7/7/94 2.000 1.744063 1.740446 0.002078
7/8/94 0.500 0.419021 0.418954 0.000159
7/12/94 0.250 0.214562 0.214372 0.000887
7/19/94 1.000 0.999974 0.998330 0.001646
7/27/94 0.100 0.095086 0.094569 0.005475
8/3/94 0.100 0.094915 0.094554 0.003813
8/13/94 0.250 0.213194 0.214224 -0.004808
8/23/94 0.100 0.094573 0.094514 0.000628
8/30/94 0.250 0.214904 0.214146 0.003538
9/8/94 0.100 0.094744 0.094481 0.002782
9/16/94 0.100 0.095086 0.094465 0.006573
9/23/94 0.100 0.093719 0.094451 -0.007751
9/30/94 0.250 0.213024 0.214004 -0.004579
10/17/94 0.100 0.093719 0.094402 -0.007239
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Table 2

Calculation of MSSD Estimator of Variance for

Heat Flow Calorimeter Data Example

Date Relative
Error

Successive
Differences

MSSD
Estimate of
Standard
Deviation

6/9/94 0.001171
6/14/94 0.000894 -0.000277
6/21/94 0.008294 0.007400
6/23/94 -0.001115 -0.009410
6/24/94 -0.007892 -0.006777
7/2/94 0.003694 0.011587
7/6/94 -0.007631 -0.011325
7/7/94 0.002078 0.009709
7/8/94 0.000159 -0.001919
7/12/94 0.000887 0.000728
7/19/94 0.001646 0.000759 0.00016973
7/27/94 0.005475 0.003828 0.00081615
8/3/94 0.003813 -0.001662 0.00033916
8/13/94 -0.004808 -0.008621 0.00169063
8/23/94 0.000628 0.005436 0.00102731
8/30/94 0.003538 0.002910 0.00053124
9/8/94 0.002782 -0.000756 0.00013367
9/16/94 0.006573 0.003791 0.00065019
9/23/94 -0.007751 -0.014325 0.00238746
9/30/94 -0.004579 0.003172 0.00051459
10/17/94 -0.007239 -0.002660 0.00042051
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Figure 3
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Figure 4
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Figure 5
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